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EQUATIONS OF DEFORMATION OF AN ELASTIC

INHOMOGENEOUS LAMINATED BODY OF REVOLUTION

UDC 539.3A. E. Alekseev and B. D. Annin

Equations governing deformation of an elastic inhomogeneous laminated body of revolution are pro-
posed. Each layer is a domain bounded by convex equidistant surfaces of revolution.
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Introduction. Various methods for constructing the theory of elastic deformation of multilayered structures
are considered in [1–4].

In the present paper, equations governing elastic deformation of a laminated body of revolution are con-
structed with the use of the results of [5–7] obtained by employing several approximations of each unknown function
in the form of truncated series in Legendre polynomials. This approach allows one to adequately formulate the con-
jugation conditions for stresses and displacements at the interlayer surfaces. Some problems of elastic deformation
of laminated structures [7–9] are solved by the method proposed.

1. Curvilinear Coordinates. Let S be a sufficiently smooth closed convex surface and the origin O of
the coordinate system (x, y, z) lie inside S at the z axis (Fig. 1). The surface S is formed by revolution of a convex
curve L located in the zr plane, where r = (x2 + y2)1/2. The curve L intersects the z axis at the right angle, and
the curvature radius at each point of the curve L is equal to or greater than ρ∗ (Fig. 2).

We write the equation of the curve L in the form

r = r̂(γ) =
dF (γ)
dγ

cos γ + F (γ) sin γ, z = ẑ(γ) =
dF (γ)
dγ

sin γ − F (γ) cos γ.

Here γ is the angle between the tangent line and the r axis, F (γ) is the support function of the contour L (distance
between the point O and the tangent line). It is obvious that r̂(γ) > 0 for 0 6 γ 6 π. The curvature radius of the
curve L is

ρ = ρ(γ) = F (γ) +
d2F (γ)
dγ2

> ρ∗ > 0.

We write the equations of the surface S as

x = xS(β, γ) =
(dF (γ)

dγ
cos γ + F (γ) sin γ

)
cosβ,

y = yS(β, γ) =
(dF (γ)

dγ
cos γ + F (γ) sin γ

)
sinβ, z = zS(β, γ) =

dF (γ)
dγ

sin γ − F (γ) cos γ.

We consider the orthogonal curvilinear coordinate system (α, β, γ):

x = x(α, β, γ) =
(dF (γ)

dγ
cos γ + (F (γ) + α) sin γ

)
cosβ, y = y(α, β, γ) =

(dF (γ)
dγ

cos γ + (F (γ) + α) sin γ
)

sinβ,

(1.1)
z = z(α, β, γ) =

dF (γ)
dγ

sin γ − (F (γ) + α) cos γ (α > 0, 0 6 γ 6 π, 0 6 β < 2π).
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The Jacobian of the coordinate transformation J(α, β, γ) does not change its sign:

J(α, β, γ) = D(x, y, z)/D(α, β, γ) = (ρ(γ) + α)(r̂(γ) + α sin γ) > 0.

It follows from (1.1) that the surface α = const is a surface equidistant to the surface S. The unit vectors of the
coordinate lines (see Fig. 1) have the form

kα = (sin γ cosβ, sin γ sinβ,− cos γ), kβ = (− sinβ, cosβ, 0),

kγ = (cos γ cosβ, cos γ sinβ,− sin γ).

2. Equations of the Linear Theory of Elasticity in the Curvilinear System of Coordinates
(α,β, γ). We formulate the problem of the linear theory of elasticity in an orthogonal coordinate system (α, β, γ).
The stresses σαα, σαβ , σαγ , σββ , σβγ , and σγγ satisfy the equations of equilibrium

∂t̂α
∂α

+
∂t̂β
∂β

+
∂t̂γ
∂γ

= 0.

Here, we have

t̂α = HγHβ(σααkα + σαβkβ + σαγkγ),

t̂β = HαHγ(σαβkα + σββkβ + σβγkγ), t̂γ = HαHβ(σαγkα + σβγkβ + σγγkγ),

Hα = 1, Hβ = r̂(γ) + α− sin γ, Hγ = ρ(γ) + α.

The strain tensor is determined in terms of the displacement vector U :

eαα =
kα
Hα
· ∂U
∂α

, eββ =
kβ
Hβ
· ∂U
∂β

, eγγ =
kγ
Hγ
· ∂U
∂γ

, 2eαβ =
kα
Hβ
· ∂U
∂β

+
kβ
Hα
· ∂U
∂α

,

2eαγ =
kα
Hγ
· ∂U
∂γ

+
kγ
Hα
· ∂U
∂α

, 2eβγ =
kβ
Hγ
· ∂U
∂γ

+
kγ
Hβ
· ∂U
∂β

.
(2.1)

The stresses and strains are related by Hooke’s law

σαα = 2µeαα + λe, σββ = 2µeββ + λe, σγγ = 2µeγγ + λe,

σαβ = 2µeαβ , σαγ = 2µeαγ , σβγ = 2µeβγ , e = eαα + eββ + eγγ ,
(2.2)

where λ and µ are the elastic moduli.
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3. Equations of Elastic Deformation of an Oval Shell of Revolution. We consider a shell of
revolution of thickness 2h that occupies the volume V and is bounded by the coordinate surfaces α1 and α2 such
that 0 < α1 < α2 = α1 + 2h. We introduce the coordinate ξ ∈ [−1, 1] in the α direction so that α = α0 + hξ and
α0 = (α1 + α2)/2.

The unknown functions U , t̂α, t̂β , and t̂γ can be written in the form of series in Legendre polynomials:

U =
∞∑
k=0

[U ]kpk(ξ), t̂i =
∞∑
k=0

[t̂i]kpk(ξ). (3.1)

Here pk(ξ) are the orthogonal Legendre polynomials; [U ]k and [t̂i]k are expansion coefficients depending on the
coordinates β and γ:

[U ]k =
1 + 2k

2

1∫
−1

Upk dξ, [t̂i]k =
1 + 2k

2

1∫
−1

t̂ipk dξ.

The surface ξ = 0 is the mid-surface of the shell. In the orthogonal coordinate system (α, β, γ), the following
relations are valid:

Hβ = Aβ(1 + ξh/Rβ), Hγ = Aγ(1 + ξh/Rγ),

Rβ =
Aβ

sin γ
=
dF

dγ
cot γ + F (γ) + α0, Rγ = Aγ =

d2F

dγ2
+ F (γ) + α0,

where Aβ and Aγ are the Lamé coefficients of the mid-surface; Rβ and Rγ are the principal curvature radii of the
mid-surface.

In accordance with [5–7], we approximate the stresses by the truncated series (3.1):

t̂β ' Aγ(Nβp0/(2h) + 3Mβp1/(2h2)), t̂γ ' Aβ(Nγp0/(2h) + 3Mγp1/(2h2)),

t̂α ' AβAγ [P0p0 + ∆P p1 + (p2 − p0)(kα × (P0 × kα)−Q/(2h))],

∆P = (P+ − P−)/2, P0 = (P+ + P−)/2.

Here

Nβ = h

1∫
−1

(
σαβkα + σββkβ +

(
1 +

hξ

Rγ

)
σβγkγ

)
dξ, Nγ = h

1∫
−1

(
σαγkα +

(
1 +

hξ

Rβ

)
σβγkβ + σγγkγ

)
dξ,

Mβ = h2

1∫
−1

ξ(σββkβ + σβγkγ) dξ, Mγ = h2

1∫
−1

ξ(σβγkβ + σγγkγ) dξ, (3.2)

Q = h

1∫
−1

(σαβkβ + σαγkγ) dξ, P± = (σααkα + σαβkβ + σαγkγ)
∣∣∣
ξ=±1

.

The displacements U = Uαkα + Uβkβ + Uγkγ are approximated by the truncated series (3.1)

kα × (U × kα) = vp0 +ψp1 + (v0 − v)p2 + (∆v −ψ)p3, U · kα = Wp0 + ∆Wp1 + (W0 −W )p2,

∆v = (v+ − v−)/2, v0 = (v+ + v−)/2, ∆W = (W+ −W−)/2, W0 = (W+ +W−)/2.
(3.3)

Here

v =
1
2

1∫
−1

(kβUβ + kγUγ) dξ, ψ =
1
2

1∫
−1

(kβUβ + kγUγ)ξ dξ,

W =
1
2

1∫
−1

kα ·U dξ, W± = kα ·U
∣∣∣
ξ=±1

, v± = (kβUβ + kγUγ)
∣∣∣
ξ=±1

.
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The strains (2.1) are approximated by the truncated series

eαα = εααp0 + χααp1, eββ = εββp0 + χββp1, eγγ = εγγp0 + χγγp1,

eβγ = εβγp0 + χβγp1, eαβ = εαβp0 + χαβp1 + ωαβp2, eαγ = εαγp0 + χαγp1 + ωαγp2.
(3.4)

Here

εαα = ∆W/h, χαα = 3(W0 −W )/h, εββ =
kβ
Aβ
· ∂v
∂β

+
1
Rβ

W, χββ =
kβ
Aβ
· ∂ψ
∂β

,

εγγ =
kγ
Aγ
· ∂v
∂γ

+
1
Rγ

W, χγγ =
kγ
Aγ
· ∂ψ
∂γ

, 2εβγ =
kγ
Aβ
· ∂v
∂β

+
kβ
Aγ
· ∂v
∂γ
, (3.5)

2χβγ =
1
Rγ

kγ
Aβ
· ∂v
∂β

+
1
Rβ

kβ
Aγ
· ∂v
∂γ

+
kγ
Aβ
· ∂ψ
∂β

+
kβ
Aγ
· ∂ψ
∂γ

, 2εαβ =
kα
Aβ
· ∂v
∂β

+
1
Aβ

∂W

∂β
+

1
h
kβ ·∆v,

2χαβ = 3kβ · (v0 − v)/h, 2ωαβ = 5kβ · (∆v −ψ)/h, 2εαγ =
kα
Aγ
· ∂v
∂γ

+
1
Aγ

∂W

∂γ
+

1
h
kγ ·∆v,

2χαγ = 3kγ · (v0 − v)/h, 2ωαγ = 5kγ · (∆v −ψ)/h.

Let us express the forces Nβ and Nγ and moments Mβ and Mγ in terms of strains and curvatures. We sub-
stitute the strain approximations (3.4) and (3.5) into (2.2) and the expressions for stresses into (3.2). Integrating the
resultant relations with allowance for the orthogonal property of Legendre polynomials, after some manipulations,
we obtain

Nβ = 2h
[5

6

(
2µε′αβ +

1
5

(P0 · kβ)
)
kα +

( E

1− ν2
(εββ + νεγγ) +

ν

1− ν
(P0 · kα)

)
kβ + 2µ

(
εβγ +

h

3Rγ
χβγ

)
kγ

]
,

Nγ = 2h
[5

6

(
2µε′αγ +

1
5

(P0 · kγ)
)
kα +

( E

1− ν2
(εγγ + νεββ) +

ν

1− ν
(P0 · kα)

)
kγ + 2µ

(
εβγ +

h

3Rβ
χβγ

)
kβ

]
,

(3.6)

Mβ =
2h2

3

[( E

1− ν2
(χββ + νχγγ) +

ν

1− ν
(∆P · kα)

)
kβ + 2µχβγkγ

]
,

Mγ =
2h2

3

[( E

1− ν2
(χββ + νχγγ) +

ν

1− ν
(∆P · kα)

)
kγ + 2µχβγkβ

]
.

Here E is Young’s modulus and ν is Poisson’s ratio,

2ε′αβ =
kα
Aβ
· ∂v
∂β

+
1
Aβ

∂W

∂β
+
kβ ·ψ
h

; 2ε′αγ =
kα
Aγ
· ∂v
∂γ

+
1
Aγ

∂W

∂γ
+
kγ ·ψ
h

.

We find the relation between the external surface forces P± and displacements. We insert the strain ap-
proximations (3.4) and (3.5) into (2.2) and the resultant expressions for stresses into (3.2). Using the properties of
Legendre polynomials for ξ = ±1, we obtain

∆q = 3µ(v0 − v)/h, q0 = 5µ(∆v −ψ)/h,

g0 = E∆W/h+ νN/(2h), ∆g = 3E(W0 −W )/h+ 3νM/(2h2).
(3.7)

Here

∆q = (q+ − q−)/2, q0 = (q+ + q−)/2, ∆g = (g+ − g−)/2, g0 = (g+ + g−)/2,

N = Nβ · kβ +Nγ · kγ , M = Mβ · kβ +Mγ · kγ , q± = (σαβkβ + σαγkγ)
∣∣∣
ξ=±1

, g± = σαα

∣∣∣
ξ=±1

.

The equations of equilibrium have the form
∂

∂β
(AγNβ) +

∂

∂γ
(AβNγ) + 2AβAγ∆P = 0,

(3.8)

∂

∂β
(Aγkα ×Mβ) +

∂

∂γ
(Aβkα ×Mγ) +AβAγ(kβ ×Nβ + kγ ×Nγ) +AβAγ2h(kα × P0) = 0.
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4. Equations of a Laminated Body Composed of Parallel Layers. We consider the surface S0 formed
by revolution of a convex curve L0 with a support function F0(γ). Curves Li (i = 1, n) with support functions
Fi(γ) = Fi−1(γ) + 2hi form a family of equidistant surfaces Si, the distance between the neighboring surfaces
Si, Si−1 being equal to 2hi.

Let B be a laminated body composed of monolayers Bi (i = 1, n) bounded by the surfaces Si−1, Si. We
denote the quantities that refer to the layer Bi by the superscript i. From the algebraic equations (3.7), we obtain
the expressions for (U+)i and (P+)i:

(g+)i = 3Ei(W i − (W−)i)/hi − 2(g−)i + 3νi(N i −M i/hi)/(2hi),

(q+)i = 15µi((v−)i +ψi − vi)/hi + 4(q−)i − 3Qi/(2hi),

(W+)i = −2(W−)i + 3W i − hi(g−)i/Ei + νi(N i − 3M i/hi)/(2Ei),
(4.1)

(v+)i = 4(v−)i + 5ψi − 3vi + hi(q−)i/µi −Qi/(2µi).

The following continuity conditions for stresses and displacements should hold at the interlayer-contact
surfaces Si (i = 1, n− 1):

(q+)i = (q−)i+1, (g+)i = (g−)i+1 (4.2)

and
(v+)i = (v−)i+1, (W+)i = (W−)i+1. (4.3)

Below, we confine our attention to the case where the following stresses are specified at the surfaces S0 and
Sn of the layered body B:

(q−)1 = Q0, (q+)n = Qn, (g−)1 = G0, (g+)n = Gn. (4.4)

Equations (4.1)–(4.4) are a system of linear algebraic equations for displacements and stresses at the
interlayer-contact surfaces Si (i = 1, n− 1) and displacements at the front faces S0 and Sn. Solving this sys-
tem, we obtain

(g+)i = Ai1Gn +Ai2G0 +
i∑

k=1

(ai1kW
k + ai2kN

k + ai3kM
k),

(W+)i = Bi1Gn +Bi2G0 +
i∑

k=1

(bi1kW
k + bi2kN

k + bi3kM
k),

(q+)i = Ci1Qn + Ci2Q0 +
i∑

k=1

(ci1kv
k + ci2kψ

k + ci3kQ
k),

(v+)i = Di
1Qn +Di

2Q0 +
i∑

k=1

(di1kv
k + di2kψ

k + di3kQ
k), (4.5)

Wn = (W+)n = Bn1Gn +Bn2G0 +
n∑
k=1

(bn1kW
k + bn2kN

k + bn3kM
k),

W0 = (W−)1 = B0
1Gn +B0

2G0 +
n∑
k=1

(b01kW
k + b02kN

k + b03kM
k),

Vn = (v+)n = Dn
1Qn +Dn

2Q0 +
n∑
k=1

(dn1kv
k + dn2kψ

k + dn3kQ
k),

V0 = (v−)1 = D0
1Qn +D0

2Q0 +
n∑
k=1

(d0
1kv

k + d0
2kψ

k + d0
3kQ

k).

Substituting expressions (4.5) into formulas (3.5)–(3.8), after some transformations, we obtain the following
system of partial differential equations:

∂

∂β
(G1X) +

∂

∂γ
(G2X) = G3X +G4. (4.6)

Here Gk (k = 1, . . . , 4) are 10n×10n matrices and X = (vi,ψi,W i,N i,M i) (i = 1, . . . , n) is the vector of unknown
functions.
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